44 research outputs found

    Calibration of ultraviolet, mid-infrared and radio star formation rate indicators

    Get PDF
    We present calibrations for star formation rate indicators in the ultraviolet, mid-infrared and radio continuum bands, including one of the first direct calibrations of 150 MHz as a star formation rate indicator. Our calibrations utilize 66 nearby star forming galaxies with Balmer decrement corrected H-alpha luminosities, which span 5 orders of magnitude in star formation rate and have absolute magnitudes of -24<M_r<-12. Most of our photometry and spectrophotometry is measured from the same region of each galaxy, and our spectrophotometry has been validated with SDSS photometry, so our random and systematic errors are small relative to the intrinsic scatter seen in star formation rate indicator calibrations. We find WISE W4 (22.8 micron), Spitzer 24 micron and 1.4 GHz have tight correlations with Balmer decrement corrected H-alpha luminosity, with scatter of only 0.2 dex. Our calibrations are comparable to those from the prior literature for L* galaxies, but for dwarf galaxies our calibrations can give star formation rates that are far greater than those derived from much of the prior literature.M.J.I.B. acknowledges financial support from The Australian Research Council (FT100100280), the Monash Research Accelerator Program (MRA), the Monash Outside Studies Programme (OSP), and the University of Cambridge. Part of this work was undertaken while M.J.I.B. was on OSP (sabbatical) leave at the University of Cambridge, Swinburne University, and the University of Melbourne. M.B. was supported by the MINEDUC-UA project, code ANT 1655. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. The NASA-Sloan Atlas was created by Michael Blanton, with extensive help and testing from Eyal Kazin, Guangtun Zhu, Adrian Price-Whelan, John Moustakas, Demitri Muna, Renbin Yan, and Benjamin Weaver. Funding for the NASA-Sloan Atlas has been provided by the NASA Astrophysics Data Analysis Program (08-ADP08-0072) and the NSF (AST-1211644)

    Multilevel Parallelization of AutoDock 4.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).</p> <p>Results</p> <p>Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.</p> <p>Conclusions</p> <p>Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.</p

    Tyrosine Kinase Syk Non-Enzymatic Inhibitors and Potential Anti-Allergic Drug-Like Compounds Discovered by Virtual and In Vitro Screening

    Get PDF
    In the past decade, the spleen tyrosine kinase (Syk) has shown a high potential for the discovery of new treatments for inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site bearing therapeutic potential have been developed, with however limited specificity towards Syk. To address this topic, we opted for the design of drug-like compounds that could impede the interaction of Syk with its cellular partners while maintaining an active kinase protein. To achieve this challenging task, we used the powerful potential of intracellular antibodies for the modulation of cellular functions in vivo, combined to structure-based in silico screening. In our previous studies, we reported the anti-allergic properties of the intracellular antibody G4G11. With the aim of finding functional mimics of G4G11, we developed an Antibody Displacement Assay and we isolated the drug-like compound C-13, with promising in vivo anti-allergic activity. The likely binding cavity of this compound is located at the close vicinity of G4G11 epitope, far away from the catalytic site of Syk. Here we report the virtual screen of a collection of 500,000 molecules against this new cavity, which led to the isolation of 1000 compounds subsequently evaluated for their in vitro inhibitory effects using the Antibody Displacement Assay. Eighty five compounds were selected and evaluated for their ability to inhibit the liberation of allergic mediators from mast cells. Among them, 10 compounds inhibited degranulation with IC50 values ≤10 µM. The most bioactive compounds combine biological activity, significant inhibition of antibody binding and strong affinity for Syk. Moreover, these molecules show a good potential for oral bioavailability and are not kinase catalytic site inhibitors. These bioactive compounds could be used as starting points for the development of new classes of non-enzymatic inhibitors of Syk and for drug discovery endeavour in the field of inflammation related disorders

    Two Glycosylation Sites in H5N1 Influenza Virus Hemagglutinin That Affect Binding Preference by Computer-Based Analysis

    Get PDF
    Increasing numbers of H5N1 influenza viruses (IVs) are responsible for human deaths, especially in North Africa and Southeast Asian. The binding of hemagglutinin (HA) on the viral surface to host sialic acid (SA) receptors is a requisite step in the infection process. Phylogenetic analysis reveals that H5N1 viruses can be divided into 10 clades based on their HA sequences, with most human IVs centered from clade 1 and clade 2.1 to clade 2.3. Protein sequence alignment in various clades indicates the high conservation in the receptor-binding domains (RBDs) is essential for binding with the SA receptor. Two glycosylation sites, 158N and 169N, also participate in receptor recognition. In the present work, we attempted to construct a serial H5N1 HA models including diverse glycosylated HAs to simulate the binding process with various SA receptors in silico. As the SA-α-2,3-Gal and SA-α-2,6-Gal receptor adopted two distinctive topologies, straight and fishhook-like, respectively, the presence of N-glycans at 158N would decrease the affinity of HA for all of the receptors, particularly SA-α-2,6-Gal analogs. The steric clashes of the huge glycans shown at another glycosylation site, 169N, located on an adjacent HA monomer, would be more effective in preventing the binding of SA-α-2,3-Gal analogs

    A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    Get PDF
    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis

    Dynamic, Large-Scale Profiling of Transcription Factor Activity from Live Cells in 3D Culture

    Get PDF
    phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture.TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A.This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a platform for screening therapeutics
    corecore